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Abstract

Natural frequencies and buckling stresses of laminated composite circular arches subjected to initial axial
stress are analyzed by taking into account the complete effects of transverse shear and normal stresses and
rotatory inertia. By using the method of power series expansion of displacement components, a set of
fundamental dynamic equations of a one-dimensional higher order theory for laminated composite circular
arches subjected to initial axial stress is derived through Hamilton’s principle. Several sets of truncated
approximate theories are applied to solve the eigenvalue problems of a simply supported circular arch. In
order to assure the accuracy of the present theory, convergence properties of the first four natural
frequencies are examined in detail. Numerical results are compared with those of the published existing
theories. The present global higher order approximate theories can predict the natural frequencies and
buckling stresses of multilayered circular arches accurately with a small number of unknowns.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Advanced composite materials have new problems, such as effects of transverse shear
deformation due to the low ratio of transverse shear modulus to axial modulus, failure due to
delamination and other secondary effects in the material formation. For laminated composite
curved beams and arches, the dominant effects of transverse shear and normal stresses on the
natural frequencies, buckling stresses and interlaminar stresses may be found as in the case of
laminated composite beams. Although a number of investigations on the vibration analysis of
curved beams made of isotropic materials can be found in the survey studies (e.g., Refs. [1,2]),
only very limited references were found on laminated composite curved beams and arches.
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The classical laminated arch theory [3], based on the shallow shell theory, has been applied to
the vibration problems of simply supported thin arches by using the Ritz method. Since the effects
of shear deformation and rotatory inertia are neglected, natural frequencies may be inaccurate for
a moderately deep laminated arch with relatively soft transverse shear modulus and for highly
anisotropic composites. In order to take into account these effects, the first order shear
deformation theory for moderately deep arches has been developed including the z=R term in the
fundamental equations by Qatu [4,5]. Based on the Timoshenko-type curved beam theory, the free
vibration of laminated composite curved beams with variable curvature has been investigated by
Tseng et al. [6]. However, since in these theories the transverse shear strain is assumed to be
constant in the depth direction, a shear correction factor has to be incorporated to adjust the
transverse shear stiffness. The accuracy of solutions of the first order shear deformation theory
and Timoshenko-type theory will be strongly dependent on predicting better estimates for the
shear correction factor.
For elastic and isotropic materials, one-dimensional higher order theories which take into

account the complete effects of shear deformations and rotatory inertia have been presented by
Matsunaga for arches [7] and rings [8]. Natural frequencies and buckling loads of circular arches
and rings subjected to concentrated axial forces were analyzed. It has been pointed out that shear
deformations have important effect on the natural frequencies and buckling loads of thick arches
and rings.
Several approximately refined one-dimensional higher order theories which take into account

the effects of transverse shear and normal stresses and rotatory inertia have been proposed to
analyze the response characteristics of laminated composite beams. A number of single-layer
(global) higher order beam theories that include the effects of transverse shear deformations have
been published by Matsunaga [9]. Natural frequencies, buckling stresses and interlaminar stresses
of multilayered composite beams have been analyzed by using the one-dimensional global higher
order theories. Remarkable effects of transverse shear deformation and depth change have been
predicted for the results. It has been shown that a global higher order beam theory can predict
accurate results not only for the natural frequency and buckling stress but also for the distribution
of displacements and stress components in multilayered composite beams. However, general one-
dimensional higher order theories have not been investigated in the vibration and stability
problems of multilayered composite arches.
This paper presents a global higher order theory for analyzing natural frequencies and buckling

stresses of laminated composite circular arches subjected to initial axial stress. The complete
effects of both shear and normal stresses can be taken into account within the approximate one-
dimensional theory. Several sets of the governing equations of truncated approximate theories are
applied to the analysis of vibration and stability problems of a simply supported multilayered
elastic circular arches. Based on the power series expansions of continuous displacement
components, a fundamental set of equations of a one-dimensional higher order circular arch
theory is derived through Hamilton’s principle. Natural frequencies and buckling stresses of a
simply supported laminated composite circular arch subjected to initial axial stress are obtained
by solving the eigenvalue problems. The modal transverse shear and normal stresses are calculated
by integrating the three-dimensional equations of motion in the depth direction, and satisfying the
continuity conditions at the interface between layers and stress boundary conditions at the top
and bottom surfaces of arches. The one-dimensional global higher order theory in the present
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paper can predict natural frequencies and buckling stresses of simply supported multilayered
circular arches subjected to initial axial stress accurately within a small number of unknowns.

2. Fundamental equations of laminated composite circular arch

Consider a circular arch of arc length L as shown in Fig. 1, having a thin rectangular cross-
section of depth H and width B which is assumed to be sufficiently small relative to the depth. The
radius of curvature R of the circular arch is assumed to be sufficiently large relative to the depth
(i.e., H=R51). A curvilinear co-ordinate system ðx; y; zÞ is defined on the central axis of the
circular arch, where the x-axis is taken along the central axis with the y-axis in the width direction
and the z-axis in the direction normal to the tangent to the central axis. Assuming that the
deformations of the arch take place in the x–z plane, the displacement components of an arch in
the x; y and z directions, respectively, can be expressed as

u � uðx; z; tÞ; v � vðx; z; tÞ ¼ 0; w � wðx; z; tÞ: ð1Þ

The displacement components may be expanded into power series of the normal co-ordinate z as
follows:

u ¼
XN
n¼0

u
ðnÞ

zn; w ¼
XN
n¼0

w
ðnÞ

zn; ð2Þ

where n ¼ 0; 1; 2;y;N:
Based on this expression of the displacement components, a set of the linear fundamental

equations of a one-dimensional higher order arch theory can be summarized in the following.
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Fig. 1. K-layer laminated composite circular arch and co-ordinates.
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2.1. Strain–displacement relations

Strain components may be expanded as follows:

exx ¼
XN
n¼0

exx

ðnÞ
zn; ezz ¼

XN
n¼0

ezz

ðnÞ
zn; gxz ¼ gzx ¼

XN
n¼0

gxz

ðnÞ
zn; ð3Þ

and strain–displacement relations can be written as [10]

eðnÞxx ¼ u;x
ðnÞ

�
1

R
w
ðnÞ
; eðnÞzz ¼ ðn þ 1Þ w

ðnþ1Þ
;

gðnÞxz ¼ gðnÞzx ¼
1

2
ðn þ 1Þ u

ðnþ1Þ
�

n � 1

R
u
ðnÞ
þw;x

ðnÞ
� �

; ð4Þ

where a comma denotes partial differentiation with respect to the co-ordinate subscripts that
follow. The curvature parameter is assumed to be H=R51; but no assumption is made for the
shallowness parameter L=R:

2.2. Equations of motion and boundary conditions

Under the assumption of plane strain or plane stress in the width direction, by introducing
stress components sxx; txz ¼ tzx and szz; Hamilton’s principle is applied to derive the equations of
dynamic equilibrium and natural boundary conditions of an arch. In order to treat vibration and
stability problems of an arch subjected to initial axial stress s0; additional work due to this stress
which is assumed to remain unchanged during vibrating and/or buckling is taken into
consideration.
The principle for the present problems may be expressed for an arbitrary time interval t1 to t2 as

follows: Z t2

t1

Z
V

fsxxdexx þ 2txzdgxz þ szzdezz þ s0ðu;xdu;x þ w;xdw;xÞ

� rð ’ud ’u þ ’wd ’wÞg dV dt ¼ 0; ð5Þ

where the overdot indicates partial differentiation with respect to time and r denotes the mass
density; dV ; the volume element; dS; the element of area of the external bounding surface.
The initial axial stress s0 is assumed to be expanded as follows:

s0 ¼
XN
c¼0

s0
ðcÞ

zc; ð6Þ

where c ¼ 0; 1; 2;y;N:
By performing the integration over the area of cross-section of the arch and the variation as

indicated in Eq. (5), the equations of motion are obtained as follows:

d u
ðnÞ
: N;x

ðnÞ
�n Q

ðn�1Þ
þ
ðn � 1Þ

R
Q
ðnÞ
þ
XN
m¼0

XN
c¼0

s0
ðnþmþcþ1Þ

u;xx

ðmÞ
� r

ðnþmþ1Þ
.u

ðmÞ
" #

¼ 0; ð7Þ

ARTICLE IN PRESS

H. Matsunaga / Journal of Sound and Vibration 271 (2004) 651–670654



d w
ðnÞ
:
1

R
N
ðnÞ
þQ;x

ðnÞ
�n T

ðn�1Þ
þ
XN
m¼0

XN
c¼0

s0
ðnþmþcþ1Þ

w;xx

ðmÞ
� r

ðnþmþ1Þ
.w

ðmÞ
" #

¼ 0; ð8Þ

where n; m ¼ 0; 1; 2;y;N and

s0
ðnþmþcþ1Þ

¼
XK

k¼1

sðkÞ0

Hnþmþcþ1
kþ1 � Hnþmþcþ1

k

n þ m þ cþ 1
;

r
ðnþmþ1Þ

¼
XK

k¼1

rðkÞ
Hnþmþ1

kþ1 � Hnþmþ1
k

n þ m þ 1
; ð9Þ

where sðkÞ0 ; rðkÞ and Hk denote the initial axial stress, the mass density of kth layer and the
thickness co-ordinate of the lower side of kth layer, respectively, and K denotes the total number
of layers in the laminated arches.
The stress resultants are defined as follows:

ðN
ðnÞ
; Q
ðnÞ
; T
ðnÞ
Þ ¼

XK

k¼1

ðsðkÞxx ; t
ðkÞ
xz ; s

ðkÞ
zz Þ

Hnþ1
kþ1 � Hnþ1

k

n þ 1
: ð10Þ

The equations of boundary conditions at the ends on the central axis as follows:

u
ðnÞ

¼ un
ðnÞ

or N
ðnÞ

¼ Nn
ðnÞ

;

w
ðnÞ

¼ wn
ðnÞ

or Q
ðnÞ

¼ Qn
ðnÞ

; ð11Þ

where n ¼ 0; 1; 2;y;N and the quantities marked with an asterisk denote quantities prescribed at
the ends on the central axis of an arch.

2.3. Constitutive relations

For elastic and orthotropic materials of each layer of laminated composite circular arches, the
two-dimensional constitutive relations for kth layer can be written under the assumption of plane
stress in the width direction of the arch as

sxx

szz

txz

8><
>:

9>=
>;

ðkÞ

¼

C
ðkÞ
11 C

ðkÞ
12 0

C
ðkÞ
21 C

ðkÞ
22 0

0 0 C
ðkÞ
33

2
664

3
775

exx

ezz

gxz

8><
>:

9>=
>;

ðkÞ

; ð12Þ

where

C
ðkÞ
11 ¼

EðkÞ
x

1� nðkÞxz n
ðkÞ
zx

; C
ðkÞ
12 ¼

EðkÞ
x nðkÞzx

1� nðkÞxz n
ðkÞ
zx

;

C
ðkÞ
21 ¼

EðkÞ
z nðkÞxz

1� nðkÞxz n
ðkÞ
zx

; C
ðkÞ
22 ¼

EðkÞ
z

1� nðkÞxz n
ðkÞ
zx

; C
ðkÞ
33 ¼ GðkÞ

xz ; ð13Þ
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where EðkÞ
x and EðkÞ

z are Young’s modulus and nðkÞxz and nðkÞzx are the Poisson’s ratios. The first suffix
of n denotes the direction of stress and the second, that of expansion and contraction. The
following relations can be established by the reciprocal theorem:

Exnzx ¼ Eznxz: ð14Þ

2.4. Stress resultants in terms of the expanded displacement components

Stress resultants can be derived from Eqs. (10) and (12) in terms of the expanded displacement
components as

N
ðnÞ

¼
XN
m¼0

C11

ðnþmþ1Þ
u;x
ðmÞ

�
1

R
w
ðmÞ

� �
þ C12

ðnþmþ1Þ
ðm þ 1Þ w

ðmþ1Þ
� �

;

T
ðnÞ

¼
XN
m¼0

C21

ðnþmþ1Þ
u;x
ðmÞ

�
1

R
w
ðmÞ

� �
þ C22

ðnþmþ1Þ
ðm þ 1Þ w

ðmþ1Þ
� �

;

Q
ðnÞ

¼
XN
m¼0

1

2
C33

ðnþmþ1Þ
ðm þ 1Þ u

ðmþ1Þ
�

m � 1

R
u
ðmÞ

þw;x
ðmÞ

� �� �
; ð15Þ

where

Cij

ðnþmþ1Þ
¼

XK

k¼1

C
ðkÞ
ij

Hnþmþ1
kþ1 � Hnþmþ1

k

n þ m þ 1
ði; j ¼ 1; 2; 3Þ: ð16Þ

2.5. Equations of motion in terms of the expanded displacement components

The equations of motion can be expressed in terms of the expanded displacement components
by using Eqs. (15) as

d u
ðnÞ

:
XN
m¼0

C11

ðnþmþ1Þ
u;x
ðmÞ

�
1

R
w
ðmÞ

� �
þ C12

ðnþmþ1Þ
ðm þ 1Þ w

ðmþ1Þ
� �

;x

(

þ
n � 1

2R
C33

ðnþmþ1Þ
ðm þ 1Þ u

ðmþ1Þ
�

m � 1

R
u
ðmÞ

þw;x
ðmÞ

� �
� r

ðnþmþ1Þ
.u

ðmÞ

�
n

2
C33

ðnþmÞ
ðm þ 1Þ u

ðmþ1Þ
�

m � 1

R
u
ðmÞ

þw;x
ðmÞ

� �
þ

XN
c¼0

s0
ðnþmþcþ1Þ

u;xx

ðmÞ
)

¼ 0; ð17Þ
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d w
ðnÞ

:
XN
m¼0

1

R
C11

ðnþmþ1Þ
u;x
ðmÞ

�
1

R
w
ðmÞ

� �
þ C12

ðnþmþ1Þ
ðm þ 1Þ w

ðmþ1Þ
� ��

þ
1

2
C33

ðnþmþ1Þ
ðm þ 1Þ u

ðmþ1Þ
�

m � 1

R
u
ðmÞ

þw;x
ðmÞ

� �
;x

� r
ðnþmþ1Þ

.w
ðmÞ

�n C22

ðnþmÞ
ðm þ 1Þ w

ðmþ1Þ
þ C21

ðnþmÞ
u;x
ðmÞ

�
1

R
w
ðmÞ

� �� �
þ
XN
c¼0

s0
ðnþmþcþ1Þ

w;xx

ðmÞ
)

¼ 0: ð18Þ

2.6. Mth order approximate theory

Since the fundamental equations mentioned above are complex, approximate arch theories of
various orders may be considered for the present problem. A set of the following combination of
displacement components for Mth ðMX1Þ order approximate equations is proposed:

u ¼
X2M�1

m¼0

u
ðmÞ

zm; w ¼
X2M�2

m¼0

w
ðmÞ

zm; ð19Þ

where m ¼ 0; 1; 2; 3;y .
The total number of the unknown displacement components is ð4M � 1Þ: In the above cases of

M ¼ 1; an assumption of plane strains in the depth direction is inherently imposed.
Another set of the governing equations of the lowest order approximate theory ðM ¼ 1Þ is

derived with the use of the assumption that the normal stress szz is zero. This theory corresponds
to the Timoshenko-type arch theory with the shear correction coefficient k2 ¼ 1:

3. Navier solution for simply supported circular arches

In order to show the applicability and reliability of the present one-dimensional higher order
theories for the analysis of vibration and buckling problems of laminated composite circular
arches, a simply supported circular arch subjected to initial axial stress is analyzed. In the
following analysis, the initial axial stress s0 is assumed to distribute uniformly in the depth
direction.
The boundary condition (11) can be expressed at the x-constant ends,

u;x
ðnÞ

¼ 0; w
ðnÞ

¼ 0: ð20Þ

Since an arch is in a state of uniform stresses, the initial axial stress is considered to be constant
during vibrating and/or buckling. Following the Navier solution procedure, displacement
components that satisfy the equations of boundary conditions (20) may be expressed as

u
ðnÞ

¼
XN
r¼1

ur

ðnÞ
cos

rpx

L
eiot; w

ðnÞ
¼

XN
r¼1

wr

ðnÞ
sin

rpx

L
eiot; ð21Þ

where the displacement mode number r ¼ 1; 2; 3;y;N and o denotes the circular frequency; i is
the imaginary unit.

ARTICLE IN PRESS

H. Matsunaga / Journal of Sound and Vibration 271 (2004) 651–670 657



The equations of motion are rewritten in terms of the generalized displacement components ur

ðnÞ

and wr

ðnÞ
:

The dimensionless initial axial or buckling stress L is defined as follows:

L ¼
AL2

p2I
s0

E
ð1Þ
x

; ð22Þ

where

A ¼ BH; I ¼ BH3=12: ð23Þ

The dimensionless frequencies O and OQ is defined as follows:

O ¼ oH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1Þ=E

ð1Þ
x

q
; OQ ¼ O

ffiffiffiffiffi
12

p
ðL=HÞ2: ð24Þ

4. Eigenvalue problem for vibration and buckling problems

The equations of motion (17) and (18) can be rewritten by collecting the coefficients for the
generalized displacements of any fixed value r: The generalized displacement vector fUg is
expressed as

fUgT ¼ fur

ð0Þ
;y; ur

ð2M�1Þ
;wr

ð0Þ
;y; wr

ð2M�2Þ
g: ð25Þ

The dynamic equation can be expressed as the following eigenvalue problem:

ð½K
 � O2½M
ÞfUg ¼ f0g; ð26Þ

where matrix [K] denotes the stiffness matrix which may contain the terms of the initial axial stress
and matrix [M], the mass matrix.
For buckling problems, the natural frequency vanishes and the stability equation can be

expressed as the following eigenvalue problem:

ð½K
 þ L½S
ÞfUg ¼ f0g; ð27Þ

where matrix [K] denotes the stiffness matrix and matrix [S], the geometric-stiffness matrix due to
the initial axial stress.
The number of eigenvalues is the same as that of the components of the generalized

displacement vector for each displacement mode number of r: Although all the eigenvalues and
eigenvectors can be computed, the dominant eigenvalue which corresponds to the minimum
natural frequency or the critical buckling stress is of great concern. When the lowest natural
frequency vanishes, the axial stress reduces to the critical buckling stress of the arch.

5. Determination of modal stress distribution

Although the transverse stress components can be calculated from the constitutive relations,
these stresses may not satisfy the continuity conditions at the interface between layers and stress
boundary conditions on the top and bottom surfaces of a laminated arch. Axial stress component
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has no reference to the surface boundary conditions and can be obtained by the constitutive
relations. With the use of the axial stress component, therefore, transverse stress components are
determined by integrating the equations of motion of three-dimensional elastic continuum, and
satisfying the stress boundary conditions on the top and bottom surfaces of an arch and the
continuity conditions at the interfaces between layers. The modal axial stress of the kth layer can
be derived in terms of the expanded displacement components by introducing the strain–
displacement relations (4) into the constitutive relations (12). The modal transverse stresses of the
kth layer are obtained by integrating the three-dimensional equations of motion in the depth
direction starting from the top (or bottom) surface of the laminated arch as follows:

tðkÞxz ¼ �
Z z

Hk

sxx;x �
1

R
txz � r .u

� �
dz þ C

ðkÞ
1 ðxÞ;

sðkÞzz ¼ �
Z z

Hk

txz;x þ
1

R
sxx � r .w

� �
dz þ C

ðkÞ
2 ðxÞ; ð28Þ

where C
ðkÞ
1 and C

ðkÞ
2 are integral constants (functions of x) obtained from the stress conditions on

the top and bottom surfaces of kth layer. If the boundary conditions of transverse stresses are
prescribed on one of the top or bottom surfaces, the stress boundary conditions on the other
surface can be satisfied through the equations of motion (17) and (18). Because of the
discontinuity of the axial stress at layer interfaces, the integration is performed in a piecewise
manner. The modal stress components in the kth layer of laminated composite arches can be
expressed as follows:

sðkÞxx ¼
XN
n¼0

½F1
ðkÞzn; ð29Þ

tðkÞxz ¼ �
XN
n¼0

F1;x �
1

R
F2 þ ro2 u

ðnÞ
� �ðkÞ ½znþ1 � Hnþ1

k 

n þ 1

þ tðk�1Þxz jz¼Hk
; ð30Þ

sðkÞzz ¼
XN
n¼0

F1;xx �
1

R
F2;x þ ro2 u;x

ðnÞ
� �ðkÞ znþ2 � Hnþ2

k

ðn þ 1Þðn þ 2Þ
�

Hnþ1
k ðz � HkÞ

n þ 1

� �

�
XN
n¼0

1

R
F1 þ ro2 w

ðnÞ
� �ðkÞ ½znþ1 � Hnþ1

k 

n þ 1

� tðk�1Þxz;x jz¼Hk
½z � Hk
 þ sðk�1Þzz jz¼Hk

; ð31Þ

where

F1 � C11 u;x
ðnÞ

�
1

R
w
ðnÞ

� �
þ ðn þ 1ÞC12 w

ðnþ1Þ
;

F2 �
1

2
C33 ðn þ 1Þ u

ðnþ1Þ
�

n � 1

R
u
ðnÞ
þw;x

ðnÞ
� �

: ð32Þ
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6. Numerical examples and results

6.1. Numerical examples

The effects of transverse shear and normal stresses and rotatory inertia on natural frequencies
and/or buckling stresses of a simply supported cross-ply laminated composite arch subjected to
initial axial stress are studied through the numerical examples. The following sets of orthotropic
material constants of each layer are taken to be the same in all the layers, but the fibre orientations
may be different among layers:

ARTICLE IN PRESS

Table 1

Convergence of first four natural frequencies of cross-ply laminated composite circular arches ðK ¼ 2 : ½0�=90�
; K ¼
3 : ½0�=90�=0�
; OQ ¼ O

ffiffiffiffiffi
12

p
ðL=HÞ2; L=R ¼ 1; Material 1)

K H=R EL=ET r M ¼ 1 M ¼ 2 M ¼ 3 M ¼ 4 M ¼ 5

2 0.1 15 1 3.8159 3.7395 3.7260 3.7250 3.7248

2 15.7705 15.2580 15.0951 15.0853 15.0825

3 32.5229 31.0216 30.4909 30.4643 30.4554

4 51.8449 48.8399 47.8154 47.7747 47.7581

40 1 3.1472 3.0555 3.0146 3.0115 3.0107

2 12.3988 11.6107 11.2336 11.2120 11.2043

3 24.3533 22.1165 21.1931 21.1528 21.1321

4 37.2798 33.1924 31.7928 31.7496 31.7122

0.2 15 1 3.4179 3.3028 3.2687 3.2662 3.2655

2 12.3373 11.6231 11.3904 11.3794 11.3751

3 22.7556 21.0912 20.6415 20.6301 20.6220

4 33.4636 30.7870 30.2088 30.2013 30.1910

40 1 2.6903 2.5075 2.4281 2.4226 2.4208

2 8.9079 7.9087 7.5817 7.5695 7.5603

3 15.5408 13.5874 13.1502 13.1423 13.1246

4 22.0939 19.3454 18.9165 18.9074 18.8840

3 0.1 15 1 7.4498 7.2863 7.2795 7.2790 7.2788

2 26.6113 25.5198 25.4892 25.4868 25.4858

3 48.2191 45.8053 45.7155 45.7124 45.7109

4 69.8673 66.2404 66.0316 66.0290 66.0275

40 1 6.4791 6.2193 6.2079 6.2071 6.2068

2 19.8053 18.7442 18.6993 18.6980 18.6974

3 33.0725 31.3681 31.2328 31.2312 31.2305

4 45.9651 43.9042 43.6116 43.6032 43.6019

0.2 15 1 5.9072 5.6256 5.6097 5.6089 5.6087

2 16.9526 16.0337 15.9675 15.9660 15.9654

3 27.6665 26.3487 26.1705 26.1653 26.1635

4 38.0762 36.5950 36.2550 36.2339 36.2289

40 1 4.3991 4.1191 4.1013 4.1006 4.1004

2 11.1602 10.6243 10.5465 10.5436 10.5426

3 17.5535 16.9774 16.8008 16.7836 16.7797

4 23.8042 23.2651 23.0010 22.9531 22.9430
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Material 1:

EL=ET ¼ open; GLT=ET ¼ GTT=ET ¼ 0:5; nLT ¼ 0:25: ð33Þ

Material 2:

EL ¼ 144:8 GPa; ET ¼ 9:65 GPa; GLT ¼ 4:14 GPa; GTT ¼ 3:45 GPa; nLT ¼ 0:3: ð34Þ

The lower suffices L and T signify the direction parallel to the fibres and the transverse direction,
respectively. The fibre orientations of the different laminates alternate between 0� and 90� with
respect to the x-axis. The thickness of each layer is identified for the 0� and 90� layers in the
laminates. Both symmetric and antisymmetric laminations with respect to the central axis are
considered. In the symmetrical laminates having an odd number of layers, the 0� layers are at the
outer surfaces of the laminate. The initial axial stress sðkÞ0 is identical in each layer. The mass
density is also assumed to be uniform in the depth direction, i.e., rð1Þ;rð2Þ;y;rðkÞ are identical. All
the numerical results are obtained for the case of plane stress in the width direction and are shown
in the dimensionless quantities. The absolute values of buckling stresses are shown in the
following results.
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Table 2

Comparison of natural frequencies of cross-ply laminated composite circular arches ðK ¼ 2 : ½0�=90�
; OQ ¼
O

ffiffiffiffiffi
12

p
ðL=HÞ2; L=R ¼ 1; r ¼ 1–4; Material 1)

Qatu Present

H=R r ¼ 1 r ¼ 2 r ¼ 3 r ¼ 4 r ¼ 1 r ¼ 2 r ¼ 3 r ¼ 4

EL=ET ¼ 1

0.01 8.4508 37.980 87.229 156.07 8.4506 37.9794 87.2294 156.0802

0.02 8.4478 37.919 86.909 155.06 8.4470 37.9173 86.9118 155.0799

0.05 8.4270 37.504 84.790 148.58 8.4244 37.4931 84.8056 148.6986

0.10 8.3546 36.153 78.546 131.57 8.3366 36.1113 78.5861 131.8830

0.20 8.0874 32.122 63.760 98.806 8.0221 31.9905 63.7929 99.2398

EL=ET ¼ 15

0.01 4.0094 18.000 41.286 73.738 4.0107 18.0026 41.2798 73.6985

0.02 3.9855 17.839 40.681 72.095 3.9903 17.8345 40.6259 71.8909

0.05 3.9109 17.089 37.667 64.041 3.9099 17.0177 37.3029 63.0335

0.10 3.7419 15.329 31.300 49.452 3.7248 15.0825 30.4554 47.7581

0.20 3.3312 11.808 21.481 31.295 3.2655 11.3751 20.6220 30.1910

EL=ET ¼ 40

0.01 3.4108 15.298 35.034 62.438 3.4122 15.2904 34.9639 62.1867

0.02 3.3871 15.093 35.220 60.178 3.3875 15.0416 33.9130 59.2143

0.05 3.2932 14.111 30.283 50.017 3.2771 13.7862 28.9378 46.8347

0.10 3.0814 11.964 23.180 35.118 3.0107 11.2043 21.1321 31.7122

0.20 2.5935 3.3979 14.446 20.425 2.4208 7.5603 13.1246 18.8840

Ref. [4]: Moderately thick beam theory (Reissner–Naghdi type of shell theory, Kirchhoff hypothesis). Present solutions:

M ¼ 5:
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Table 3

Comparison of natural frequencies of cross-ply laminated composite circular arches ðK ¼ 2 : ½0�=90�
; OQ ¼
O

ffiffiffiffiffi
12

p
ðL=HÞ2; L=H ¼ 100; r ¼ 1� 4; Material 1)

Qatu Present

L=R r ¼ 1 r ¼ 2 r ¼ 3 r ¼ 4 r ¼ 1 r ¼ 2 r ¼ 3 r ¼ 4

EL=ET ¼ 1

0.0 9.8702 39.491 88.892 158.12 9.8683 39.4570 88.7182 157.5722

0.1 9.8549 39.475 88.876 158.11 9.8533 39.4420 88.7032 157.5573

0.2 9.8102 39.431 88.830 158.06 9.8084 39.3971 88.6583 157.7512

0.3 9.7364 39.356 88.757 157.99 9.7340 39.3225 88.5834 157.4375

0.5 9.4993 39.116 88.516 157.16 9.4987 39.0835 88.3442 157.1982

0.8 8.9473 38.538 87.935 157.16 8.9429 38.5064 87.7631 156.6161

1.0 8.4516 38.000 87.335 156.42 8.4506 37.9794 87.2294 156.0802

EL=ET ¼ 15

0.0 4.7037 18.810 42.320 75.222 4.7010 18.7784 42.1552 74.7057

0.1 4.6936 18.795 42.295 75.181 4.6919 18.7635 42.1307 74.6680

0.2 4.6707 18.767 42.255 75.131 4.6687 18.7343 42.0921 74.6162

0.3 4.6348 18.721 42.198 75.059 4.6314 18.6911 42.0393 74.5503

0.5 4.5176 18.593 42.049 74.881 4.5159 18.5625 41.8915 74.3763

0.8 4.2483 18.296 41.721 74.509 4.2470 18.2665 41.5655 74.0109

1.0 4.0115 18.030 41.431 74.188 4.0107 18.0026 41.2798 73.6985

EL=ET ¼ 40

0.0 4.0072 16.024 36.040 64.061 4.0014 15.9568 35.7219 63.0640

0.1 3.9938 16.011 36.017 64.021 3.9935 15.9434 35.6996 63.0296

0.2 3.9758 15.980 35.985 63.976 3.9735 15.9179 35.6652 62.9832

0.3 3.9442 15.944 35.933 63.918 3.9416 15.8804 35.6189 62.9249

0.5 3.8432 15.831 35.805 63.757 3.8429 15.7697 35.4904 62.7726

0.8 3.6179 15.576 35.521 63.433 3.6136 15.5160 35.2093 62.4560

1.0 3.4153 15.349 35.271 63.156 3.4122 15.2904 34.9639 62.1867

Ref. [4]: Moderately thick beam theory. Present solutions: M ¼ 5:
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Fig. 2. Natural frequency O versus number of layers K (O1;L=H ¼ 5; 10; K ¼ 1� 30 : ½0�=90�=0�=90�=?
; Material 2).
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6.2. Convergence of first four natural frequencies

In order to verify the accuracy of the present solutions, convergences of the first four natural
frequencies of cross-ply laminated composite circular arches without initial axial stress are
examined in Table 1. Antisymmetric two-layer and symmetric three-layer arches of Material 1
are considered. It is noticed that the proper order of the present higher order approximate
theories may be estimated according to the level of curvature parameter H=R and orthotropy
ratio EL=ET : Since the present results for M ¼ 1–5 converge accurately enough within the present
order of approximate theories, only the numerical results for M ¼ 5 are discussed in the
following.
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Table 4

Comparison of natural frequencies of cross-ply laminated composite beams ðK ¼ 4 : ½0�=90�=90�=0�
; OQ ¼
O

ffiffiffiffiffi
12

p
ðL=HÞ2; r ¼ 127; Material 2)

Mode number L=H ¼ 10 L=H ¼ 15

Ref. [11] Ref. [12] Present Ref. [13] Ref. [14] Ref. [15] Present

1 2.3189 2.3194 2.3136 2.5023 2.5024 2.4959 2.4953

2 7.0171 7.0029 7.0044 8.4812 8.4813 8.4663 8.4657

3 12.132 12.037 12.0980 15.7558 15.7559 15.7599 15.7622

4 17.301 17.015 17.2013 23.3089 17.2591a — 23.3858

5 22.533 21.907 22.2857 30.8386 23.3093 — 31.0535

6 — 23.3371 22.54221 — 30.8391 — 34.14961

7 27.881 26.736 27.3628 — — — 38.7030

Ref. [11]: Third order shear deformation theory (immovable hinged ends). Ref. [12]: First order shear deformation

theory (k2 ¼ 5=6; immovable hinged ends). Refs. [13–15]: First order shear deformation theory ðk2 ¼ 5=6Þ: Present
solutions: M ¼ 5:

aThe corresponding frequency did not exist in the present analysis.
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6.3. Comparison of natural frequencies with those of existing solutions

Comparisons of natural frequencies with existing results are also performed for simply supported
cross-ply laminated composite arches of Material 1. For two-layer antisymmetric laminates ½0�=90�

of L=R ¼ 1; the first four natural frequencies are compared with Qatu’s results [4] in Table 2. A good
agreement is obtained with the reference for this case, while a considerable difference can be noticed
for higher frequencies of laminated arches with high ratio of axial modulus to transverse shear

ARTICLE IN PRESS

Table 5

Natural frequencies and buckling stresses of laminated composite circular arches (O;Lb;L=H ¼ 5; r ¼ 1; Material 2)

Mode number ½0�=90�
 ½0�=90�=0�
 ½0�=90�=90�=0�


L=R O Lb O Lb O Lb

0 1 0.04570 0.1608 0.07165 0.3953 0.07004 0.3778

2 0.3589 9.9190 0.4967 18.9932 0.4255 13.9412

0.5 1 0.04271 0.1405 0.06875 0.3639 0.06720 0.3477

2 0.3758 10.8751 0.5023 19.4242 0.4304 14.2637

1.0 1 0.03704 0.1056 0.06062 0.2829 0.05925 0.2703

2 0.3975 12.1665 0.5180 20.6592 0.4442 15.1950
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Fig. 4. (a) Modal displacement and stress distributions of two-layer cross-ply laminated composite circular arches (O1;
L=H ¼ 5; K ¼ 2 : ½0�=90�
; Material 2). (b) Modal displacement and stress distributions of two-layer cross-ply

laminated composite circular arches (O2; L=H ¼ 5; K ¼ 2 : ½0�=90�
; Material 2).
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modulus EL=ET due to the effects of transverse shear and normal stresses. Comparisons with existing
results [4], which are also performed for simply supported antisymmetric ½0�=90�
 cross-ply
laminated composite arches with the depth parameter L=H ¼ 100; are shown in Table 3.
In Table 4, the first seven natural frequencies of four-layer simply supported symmetric cross-

ply laminated composite beams of Material 2 are compared with the results in Refs. [10–14]. The
superscript on the right shoulder of natural frequency in Table 4 is the longitudinal vibration
mode number r: A good agreement is obtained with the references for symmetric cross-ply
laminated composite beams.

6.4. Fundamental natural frequencies with respect to number of layers

Fig. 2 shows the variation of fundamental natural frequencies O of simply supported cross-ply
laminated composite circular arches with respect to number of layers K ¼ 1–30. The material
properties of the individual layers are given by Material 2. Since the total number of unknowns of
the present global higher order theory does not increase as the number of layers increases,
multilayered composite circular arches with a large number of layers can be analyzed without
difficulty. For small number of layers, the natural frequency is influenced largely by the number of
layers and stacking sequences. However, for large number of layers, the natural frequency does
not change and approaches a constant value. The feature of the anisotropy effects becoming
stabilized as the number of layers increases can also be noticed for higher frequencies.
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6.5. Buckling stresses of laminated composite circular arches

The buckling stresses can be calculated usually through the stability equation (27) as eigenvalue
problems. Another method to obtain the buckling stresses of laminated composite arches
subjected to initial axial stress is to compute natural frequencies by increasing the absolute value
of compressive stresses till the corresponding natural frequency vanishes.
In the case of a simply supported arch subjected to initial axial stress L; the natural frequency

Oa can be expressed explicitly with reference to the natural frequency O0 of arches without axial
stress. The relation between Oa and O0 can be obtained from a comparison of the equations of
motion as follows:

O2
a ¼ O2

0 þ
r2p4

12

H

L

� �4

L: ð35Þ

When the natural frequency Oa vanishes under the initial axial stress, elastic buckling occurs and
the buckling stress Lb relates with the natural frequency O0 as

Lb ¼ �
12

r2p4
L

H

� �4

O2
0: ð36Þ
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Fig. 5. (a) Modal displacement and stress distributions of three-layer cross-ply laminated composite circular arches (O1;
L=H ¼ 5; K ¼ 3 : ½0�=90�=0�
; Material 2). (b) Modal displacement and stress distributions of three-layer cross-ply

laminated composite circular arches (O2; L=H ¼ 5; K ¼ 3 : ½0�=90�=0�
; Material 2).
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The buckling stresses of simply supported laminated composite arches subjected to initial axial
stress can be predicted from the natural frequency of the arches without axial stress.
For symmetric four-layer laminated composite arches of Material-2 with the curvature

parameter L=R ¼ 1 and the thickness parameter L=H ¼ 5 and 10, the lowest natural frequencies
are plotted with respect to the initial axial stress in Fig. 3. The figures show the effects of initial
axial stress on the frequency curves for the first five displacement modes of r ¼ 1–5. When the
natural frequencies go to zero, the initial axial stress reduces to the buckling stresses of the arch.
In Table 5, the first two natural frequencies and the corresponding buckling stresses of simply
supported cross-ply laminated composite arches are shown for symmetric and antisymmetric
laminates of L=H ¼ 5: It can be seen that relation (36) is established between the buckling stress
and natural frequency in Table 5.

6.6. Modal displacement and stress distributions

For two-, three- and four-layer laminated composite circular arches of Material-2 with the
thickness parameter L=H ¼ 5; the distributions of modal displacements and stresses associated
with the first two natural frequencies O1 and O2 for the fundamental displacement mode r ¼ 1 are
shown in Figs. 4a–b, 5a–b and 6a–b, respectively. The lower natural frequency O1 is for
predominantly bending mode with some shear deformation, whereas the upper frequency O2 is for
predominantly axial mode. The modal displacement and stress distributions in the x direction
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Fig. 5 (continued).
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follow harmonic functions. In the figures, the through-the-thickness distributions of modal
displacements and stresses are normalized by their maximum absolute values. The normal stresses
SxxðxÞ � sxx=jsxxjmax and SzzðxÞ � szz=jszzjmax; and the transverse displacement W ðxÞ � w=jwjmax

are calculated at x ¼ x=a ¼ 0:5: The transverse shear stress SxzðxÞ � sxz=jsxzjmax and the in-plane
displacement UðxÞ � u=jujmax are calculated at x ¼ 0:0: The stress boundary conditions at the top
and bottom surfaces of the arch and the continuity conditions at the interfaces between layers are
satisfied accurately.
The corresponding natural frequencies and buckling stresses (with minus sign) to the modal

displacement and stress components in Figs. 4–6 are shown in Table 5.

7. Conclusions

Natural frequencies and buckling stresses of simply supported multilayered composite circular
arches have been analyzed by using a global higher order arch theory. In order to analyze the
complete effects of higher order deformations on the natural frequencies and buckling stresses of
cross-ply laminated composite circular arches, various orders of the expanded approximate
laminate theories have been presented. It is shown through the numerical examples that the
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Fig. 6. (a) Modal displacement and stress distributions of four-layer cross-ply laminated composite circular arches (O1;
L=H ¼ 5; K ¼ 4 : ½0�=90�=90�=0�
; Material 2). (b) Modal displacement and stress distributions of four-layer cross-ply

laminated composite circular arches (O2; L=H ¼ 5; K ¼ 4 : ½0�=90�=90�=0�
; Material 2).
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present global higher order theories can provide accurate results for natural frequencies and
buckling stresses of general cross-ply laminated composite circular arches. The total number of
unknowns is not dependent on the number of layers in any multilayered arches. It should be
pointed out that the present theory has the advantage of predicting natural frequencies and
buckling stresses of multilayered composite arches without increasing the unknowns involved as
the number of layers increases.
The distribution of modal displacements and stresses in the depth direction has also been

obtained accurately in the ply level. The modal transverse shear and normal stresses have been
obtained by integrating the three-dimensional equations of motion in the depth direction. The
stress boundary conditions at the top and bottom surfaces of the arch and the continuity
conditions at the interfaces between layers have been satisfied.
It has been shown that a global higher order arch theory can predict not only the natural

frequency and buckling stress but also the accurate distribution of modal displacements and stress
components in multilayered composite arches.
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